Jump to content

Leaderboard

Popular Content

Showing content with the highest reputation on 05/17/2020 in all areas

  1. Our objective is to provide the scientific and civil communities with a state-of-the-art global digital elevation model (DEM) derived from a combination of Shuttle Radar Topography Mission (SRTM) processing improvements, elevation control, void-filling and merging with data unavailable at the time of the original SRTM production: NASA SRTM DEMs created with processing improvements at full resolution NASA's Ice, Cloud,and land Elevation Satellite (ICESat)/Geoscience Laser Altimeter (GLAS) surface elevation measurements DEM cells derived from stereo optical methods using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data from the Terra satellite Global DEM (GDEM) ASTER products developed for NASA and the Ministry of Economy, Trade and Industry of Japan by Sensor Information Laboratory Corp National Elevation Data for US and Mexico produced by the USGS Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) developed by the USGS and the National Geospatial-Intelligence Agency (NGA) Canadian Digital Elevation Data produced by Natural Resources Canada We propose a significant modernization of the publicly- and freely-available DEM data. Accurate surface elevation information is a critical component in scientific research and commercial and military applications. The current SRTM DEM product is the most intensely downloaded dataset in NASA history. However, the original Memorandum of Understanding (MOU) between NASA and NGA has a number of restrictions and limitations; the original full resolution, one-arcsecond data are currently only available over the US and the error, backscatter and coherence layers were not released to the public. With the recent expiration of the MOU, we propose to reprocess the original SRTM raw radar data using improved algorithms and incorporating ancillary data that were unavailable during the original SRTM processing, and to produce and publicly release a void-free global one-arcsecond (~30m) DEM and error map, with the spacing supported by the full-resolution SRTM data. We will reprocess the entire SRTM dataset from raw sensor measurements with validated improvements to the original processing algorithms. We will incorporate GLAS data to remove artifacts at the optimal step in the SRTM processing chain. We will merge the improved SRTM strip DEMs, refined ASTER and GDEM V2 DEMs, and GLAS data using the SRTM mosaic software to create a seamless, void-filled NASADEM. In addition, we will provide several new data layers not publicly available from the original SRTM processing: interferometric coherence, radar backscatter, radar incidence angle to enable radiometric correction, and a radar backscatter image mosaic to be used as a layer for global classification of land cover and land use. This work leverages an FY12 $1M investment from NASA to make several improvements to the original algorithms. We validated our results with the original SRTM products and ancillary elevation information at a few study sites. Our approach will merge the reprocessed SRTM data with the DEM void-filling strategy developed during NASA's Making Earth System Data Records for Use in Research Environments (MEaSUREs) 2006 project, "The Definitive Merged Global Digital Topographic Data Set" of Co-Investigator Kobrick. NASADEM is a significant improvement over the available three-arcsecond SRTM DEM primarily because it will provide a global DEM and associated products at one-arcsecond spacing. ASTER GDEM is available at one-arcsecond spacing but has true spatial resolution generally inferior to SRTM one-arcsecond data and has much greater noise problems that are particularly severe in tropical (cloudy) areas. At one-arcsecond, NASADEM will be superior to GDEM across almost all SRTM coverage areas, but will integrate GDEM and other data to extend the coverage. Meanwhile, DEMs from the Deutsches Zentrum für Luft- und Raumfahrt Tandem-X mission are being developed as part of a public-private partnership. However, these data must be purchased and are not redistributable. NASADEM will be the finest resolution, global, freely-available DEM products for the foreseeable future. data page: https://lpdaac.usgs.gov/products/nasadem_hgtv001/ news links: https://earthdata.nasa.gov/esds/competitive-programs/measures/nasadem
    1 point
  2. A new set of 10 ArcGIS Pro lessons empowers GIS practitioners, instructors, and students with essential skills to find, acquire, format, and analyze public domain spatial data to make decisions. Described in this video, this set was created for 3 reasons: (1) to provide a set of analytical lessons that can be immediately used, (2) to update the original 10 lessons created by my colleague Jill Clark and I to provide a practical component to our Esri Press book The GIS Guide to Public Domain Data, and (3) to demonstrate how ArcGIS Desktop (ArcMap) lessons can be converted to Pro and to reflect upon that process. The activities can be found here. This essay is mirrored on the Esri GeoNet education blog and the reflections are below and in this video. Summary of Lessons: Can be used in full, in part, or modified to suit your own needs. 10 lessons. 64 work packages. A “work package” is a set of tasks focused on solving a specific problem. 370 guided steps. 29 to 42 hours of hands-on immersion. Over 600 pages of content. 100 skills are fostered, covering GIS tools and methods, working with data, and communication. 40 data sources are used, covering 85 different data layers. Themes covered: climate, business, population, fire, floods, hurricanes, land use, sustainability, ecotourism, invasive species, oil spills, volcanoes, earthquakes, agriculture. Areas covered: The Globe, and also: Brazil, New Zealand, the Great Lakes of the USA, Canada, the Gulf of Mexico, Iceland, the Caribbean Sea, Kenya, Orange County California, Nebraska, Colorado, and Texas USA. Aimed at university-level graduate and university or community college undergraduate student. Some GIS experience is very helpful, though not absolutely required. Still, my advice is not to use these lessons for students’ first exposure to GIS, but rather, in an intermediate or advanced setting. How to access the lessons: The ideal way to work through the lessons is in a Learn Path which bundle the readings of the book’s chapters, selected blog essays, and the hands-on activities.. The Learn Path is split into 3 parts, as follows: Solving Problems with GIS and public domain geospatial data 1 of 3: Learn how to find, evaluate, and analyze data to solve location-based problems through this set of 10 chapters and short essay readings, and 10 hands-on lessons: https://learn.arcgis.com/en/paths/the-gis-guide-to-public-domain-data-learn-path/ Solving Problems with GIS and public domain geospatial data 2 of 3: https://learn.arcgis.com/en/paths/the-gis-guide-to-public-domain-data-learn-path-2/ Solving Problems with GIS and public domain geospatial data 3 of 3: https://learn.arcgis.com/en/paths/the-gis-guide-to-public-domain-data-learn-path-3/ The Learn Paths allow for content to be worked through in sequence, as shown below: You can also access the lessons by accessing this gallery in ArcGIS Online, shown below. If you would like to modify the lessons for your own use, feel free! This is why the lessons have been provided in a zipped bundle as PDF files here and as MS Word DOCX files here. This video provides an overview. source: https://spatialreserves.wordpress.com/2020/05/14/10-new-arcgis-pro-lesson-activities-learn-paths-and-migration-reflections/
    1 point
×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.

Disable-Adblock.png

 

If you enjoy our contents, support us by Disable ads Blocker or add GIS-area to your ads blocker whitelist