Jump to content
  • Chatbox

    You don't have permission to chat.
    Load More

    How to generate vegetation percentage map from NDVI

    serdawe
    By serdawe,
    Hello, Does anyone know how to obtain vegetation percentage map from NDVI image? Thank you in advance.

    MODIS GPP calculation

    Nada
    By Nada,
    Hi all,   I am a remote sensing beginner and was hoping to find an answer to my question here. I am trying to use MODIS GPP product 8-day composite for yearly calculation. I need this specific product to figure out the GPP of an area in an annual time series but not sure how to use the 8-day composite as yearly. Please help. Thank you.

    ArcGIS Notebook Server for Enterprise 10.7

    rahmansunbeam
    By rahmansunbeam,
    As part of ArcGIS Enterprise 10.7, we (ESRI) are thrilled to release a new capability that unlocks versatile data science tools and the limitless potential of Python in your Web GIS deployment. ArcGIS Notebooks provide users with a Jupyter notebook environment, hosted in your ArcGIS Enterprise portal and powered by the new ArcGIS Notebook Server. ArcGIS Notebooks are built to run big data analysis, deep learning models, and dynamic visualization tools. Notebooks are implemented using Docker

    Open data: over 36,000 historical RADARSAT-1 satellite images of the Earth now available to the public

    Lurker
    By Lurker,
    News release April 1, 2019, Saint-Hubert, Quebec – The Canadian Space Agency and the Canada Centre for Mapping and Earth Observation are making RADARSAT-1 synthetic aperture radar images of Earth available to researchers, industry and the public at no cost. The 36,500 images are available through the Government of Canada's Earth Observation Data Management System. The RADARSAT-1 dataset is valuable for testing and developing techniques to reveal patterns, trends and associ

    Second GPS III satellite delivered and will launch in for July

    Lurker
    By Lurker,
    The U.S. Air Force’s second new GPS III satellite, bringing higher-power, more accurate and harder-to-jam signals to the GPS constellation, has arrived in Florida for launch. On March 18, Lockheed Martin shipped the Air Force’s second GPS III space vehicle (GPS III SV02) to Cape Canaveral for an expected July launch. Designed and built at Lockheed Martin’s GPS III Processing Facility near Denver, the satellite traveled from Buckley Air Force Base, Colorado, to the Cape on a massive Air

Portal by DevFuse · Based on IP.Board Portal by IPS
  • Forum Statistics

    8.7k
    Total Topics
    43.4k
    Total Posts
  • Latest Posts

    • Hello! Hello!   Join us on Wednesday [GIS DAA] for a zoom webinar as we discuss "The Future of GIS: Emerging Technologies and Global Impact in Different Sectors" and "GIS for Sustainable Development."   Our event will feature two distinguished key speakers, senior specialists in the field, who will enlighten us with their insights and expertise.   Save the date and stay tuned for more details on this exciting opportunity to explore the cutting-edge advancements and societal applications of Geographic Information Systems. Here is the registration link: https://shorturl.at/f5W68   See you there! #IRESexperience
    • Sometimes you need to create a satellite navigation tracking device that communicates via a low-power mesh network. [Powerfeatherdev] was in just that situation, and they whipped up a particularly compact solution to do the job. As you might have guessed based on the name of its creator, this build is based around the ESP32-S3 PowerFeather board. The PowerFeather has the benefit of robust power management features, which makes it perfect for a power-sipping project that’s intended to run for a long time. It can even run on solar power and manage battery levels if so desired. The GPS and LoRa gear is all mounted on a secondary “wing” PCB that slots directly on to the PowerFeather like a Arduino shield or Raspberry Pi HAT. The whole assembly is barely larger than a AA battery. It’s basically a super-small GPS tracker that transmits over LoRa, while being optimized for maximum run time on limited power from a small lithium-ion cell. If you’re needing to do some long-duration, low-power tracking task for a project, this might be right up your alley. https://hackaday.com/2024/10/17/tiny-lora-gps-node-relies-on-esp32/
    • Multiple motors or servos are the norm for drones to achieve controllable flight, but a team from MARS LAB HKU was able to a 360° lidar scanning drone with full control on just a single motor and no additional actuators. Video after the break. The key to controllable flight is the swashplateless propeller design that we’ve seen a few times, but it always required a second propeller to counteract self-rotation. In this case, the team was able to make that self-rotation work so that they could achieve 360° scanning with a single fixed LIDAR sensor. Self-rotation still needs to be slowed, so this was done with four stationary vanes. The single rotor also means better efficiency compared to a multi-rotor with similar propeller disk area. The LIDAR comprises a full 50% of the drone’s weight and provides a conical FOV out to a range of 450m. All processing happens onboard the drone, with point cloud data being processed by a LIDAR-inertial odometry framework. This allows the drone to track and plan its flight path while also building a 3D map of an unknown environment. This means it would be extremely useful for indoor or underground environments where GPS or other positioning systems are not available. All the design files and code for the drone are up on GitHub, and most of the electronic components are off-the-shelf. This means you can build your own, and the expensive lidar sensor is not required to get it flying. This seems like a great platform for further experimentation, and getting usable video from a normal camera would be an interesting challenge.   Single Rotor Drone Spins For 360 Lidar Scanning | Hackaday
    • The fall update to Global Mapper includes numerous usability updates, processing improvements, and with Pro, beta access to the Global Mapper Insight and Learning Engine which contains deep learning-based image analysis tools. Global Mapper is a complete geospatial software solution. The Standard version excels at basic vector, raster, and terrain editing, with Global Mapper Pro expanding the toolset to support drone-collected image processing, point cloud classification and extraction, and many more advanced image and terrain analysis options. Version 26.0 of Global Mapper Standard focuses on ease-of-use updates to improve the experience and efficiency of the software. A Global Search acts as a toolbox to locate any tool within the program, and a source search in the online data streaming tool makes it easier to bring online data into the application. Updates for working with 3D data include construction site planning to keep all edited terrain for a flattened site within a selected area and the ability to finely adjust the vertex position of 3D lines in reference to terrain in the Path Profile tool. Perhaps the largest addition to Global Mapper Pro v26.0 is the availability of the new Insight and Learning Engine which provides deep learning-based image analysis. Available with Global Mapper Pro for a limited time for users to test and explore, users can leverage built-in models for building extraction, vehicle detection, or land cover classification. These models can even be fine-tuned with iterative training to optimize the analysis for the data area.
  • Latest Topics

  • Recent Achievements

    • Robyev earned a badge
      One Month Later
    • Robfib earned a badge
      One Month Later
    • msig0000 went up a rank
      Rookie
    • instrutorgis earned a badge
      One Year In
    • umn earned a badge
      Reacting Well
×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.

Disable-Adblock.png

 

If you enjoy our contents, support us by Disable ads Blocker or add GIS-area to your ads blocker whitelist